Weigela species and cultivar genome size and ploidy estimations: shrub breeding[©]

E. Pfarr and J.J. Rothleutner^a

Tree and Shrub Breeder, The Morton Arboretum, Lisle, Illinois 60532, USA.

INTRODUCTION

Weigela are among the most popular flowering shrubs for temperate landscapes as they tolerate a wide range of cultural conditions, propagate easily from cuttings, and flower heavily in late spring. The genus is composed of 10 species native to China, Japan, Manchuria, and the Korean peninsula. Since the genus was brought to western horticulture near 1860, over two hundred cultivars have been introduced (Dirr, 2009; Sheffield Botanical Gardens, 2015). Introductions continue today with breeding work emphasizing the development of compact plants, novel foliage colors, and recurrent blooming characteristics. One cultivar, 'Courtalor', Carnaval® weigela is widely promoted as a reblooming polyploid (Pantin, 2015; Wood). Because polyploidy may be associated with ornamental characteristics that breeders may be selecting for, such as reblooming, we set out to investigate the presence of polyploidy in natural populations and extent of polyploidy in available cultivars. This manuscript reports genome size and ploidy estimations for 10 species and 46 cultivars, from a total of 74 accessions.

METHODS AND MATERIALS

Plant material was sampled from plants growing at The Morton Arboretum, the Chicago Botanic Garden, and the Arnold Arboretum of Harvard University. Genome sizes were determined by using a flow cytometer (CyFlow® PloidyAnalyser; Partec. Münster, Germany) with materials and protocols from Cystain PI absolute P test kits (Partec. Münster, Germany). Tissue samples were collected from expanding leaves and co-chopped with an internal standard, a leaf sample of *Pisum sativum* 'Ctirad', with a known genome size of 8.76 pg (Greilhuber et al., 2007). After chopping the sample was filtered through a 30-micron mesh filter (Celltrics®; Partec. Münster, Germany) and then stained with propidium iodide from the test kit. After staining the samples were immediately loaded and analyzed by the flow cytometer. Data was collected until at least 5000 nuclei of the unknown sample and at least 3000 nuclei of the internal standard were counted, CVs were maintained at less than 5% for the sample and the internal standard. Three replications were performed per genotype tested. Data was interpreted by one-way ANOVA (P<0.05) and Fisher's LSD for means separation (P<0.05). Our genome sizes were compared to reported chromosome counts to infer chromosome number and ploidy level.

RESULTS AND DISCUSSION

Genome sizes of our samples grouped from 1.91 to 2.32 pg of DNA; with one outlier, *W*. 'Courtalor', Carnaval[®] weigela at 3.03 pg of DNA (Table 1). Looking at literature, Duron and Decourtye report chromosome counts on the cultivar *W*. 'Newport Red' (syn. 'Vanicek') to be 2n=2x=36, a diploid (1990); Sokolovskaya and Probatova (1985) report chromosome counts of *W. praecox* to be 2n=36. Comparing these reports to our results we infer that the group with genome sizes of 1.91-2.32 pg of DNA are all diploid (2n=2x=36), and because *W*. 'Courtalor', Carnaval[®] weigela has approximately 1.5 times greater DNA content than the diploid group that it is a triploid (be 2n=3x=54).

From our sampling across all ten species and from across some of the species ranges it appears that polyploidy does not occur or does not commonly occur in wild *Weigela* populations. Additionally our screening of 46 cultivars uncovered only one polyploid, suggesting that polyploidy among existing *Weigela* cultivars is also not common. On deeper

^aE-mail: jrothleutner@mortonarb.org

investigation to the origins of *W*. 'Courtalor', Carnaval[®] weigela it was found that it had been derived from mutation breeding program in France. The breeders had artificially induced polyploidy (tetraploids, 2n=4x=74) by in vitro colchicine applications and backcrossed tetraploids with diploids to recover triploids; leading to three selections *W*. 'Courtared', Lucifer[®] weigela, *W*. 'Courtamon', and *W*. 'Courtalor', Carnaval[®] weigela (Duron and Decourtye, 1990). In our work only *W*. 'Courtalor' CARNAVAL was tested and we did not confirm the ploidy level of these other two selections.

			Relative 2C	
Таха	Source ¹	Accession #	genome size	2C ploidy level (x)
10,0	oource		[mean ± SE (pg)]	
W. 'Courtalor', Carnaval [®] weigela	MOR	359-2015 ct	3.03 ± 0.02	3
W. middendorffiana	MOR	354-2015 ct	2.32 ± 0.00	2
W. decora	MOR	53-200*1	2.28 ± 0.02	2
W. japonica	ARN	1317-84-A	2.23 ± 0.00	2
W. hortensis	ARN	414-2007-B	2.20 ± 0.01	2
W. 'Sunset', My Monet [®] sunset wiegela	MOR	221-2014*2	2.16 ± 0.00	2
W. ×incarnata	MOR	333-85*1	2.14 ± 0.02	2
W. floribunda	ARN	1019-90-rA	2.13 ± 0.05	2
W. 'Carlton', Ghost [®] weigela	MOR	348-2015 ct	2.13 ± 0.01	2
<i>W.</i> 'Verweig', My Monet [®] weigela	MOR	214-2007*2	2.12 ± 0.05	2
W. 'Bokratwo', Merlot Pink weigela PP#21763	MOR	357-2015 ct	2.09 ± 0.02	2
W. 'P. Duchartre'	MOR	1007-80*1	2.08 ± 0.03	2
W. 'Alexandra', Wine and Roses® weigela	MOR	426-2001*5	2.08 ± 0.02	2
W. 'Bristol Snowflake'	MOR	353-2015 ct	2.08 ± 0.04	2
W. 'Argento-marginata Variegata'	MOR	559-71*1	2.07 ± 0.01	2
W. 'White Knight'	MOR	1078-2004	2.07 ± 0.02	2
W. 'Bramwell', Fine Wine® weigela	MOR	164-2008	2.07 ± 0.02	2
W. florida 'Variegata'	MOR	905-62*1	2.06 ± 0.00	2
W. 'Bokraspiwi', Spilled Wine® weigela	MOR	358-2015	2.06 ± 0.01	2
W. 'Pink Delight'	CBG	236-1992	2.05 ± 0.02	2
W. 'Groenewegenii'	MOR	564-71*1	2.05 ± 0.02	2
W. 'Bokrashine', Shining Sensation™ weigela	CBG	639-2012	2.05 ± 0.01	2
W. 'Victoria'	CBG	709-2003*6	2.05 ± 0.02	2
W. 'Bokrafive' Merlot Rose	MOR	355-2015	2.05 ± 0.01	2
W. 'Pink Princess'	MOR	89-75*1	2.04 ± 0.02	2
W. 'Bokrafour', Flamingo Pink® weigela	MOR	356-2015	2.04 ± 0.01	2
<i>W.</i> 'Samba'	CBG	65-2012*3	2.04 ± 0.02	2
W. 'Centennial'	MOR	330-85*2	2.03 ± 0.00	2
W. decora	ARN	81-90-A	2.03 ± 0.01	2
W. 'Candida'	CBG	171-2003*1	2.03 ± 0.02	2
W. 'Elvera', Midnight Wine® weigela	CBG	501-2010	2.03 ± 0.02	2
W. subsessilis	ARN	906-77-E	2.02 ± 0.01	2
W. coraeensis	MOR	423-58*1	2.02 ± 0.02	2
W. 'Bristol Ruby'	MOR	1004-80*1	2.02 ± 0.01	2
W. 'Newport Red' (syn. 'Vanicek')	MOR	1009-80*3	2.02 ± 0.02	2
W. 'Tango'	CBG	66-2012*2	2.02 ± 0.02	2
W. 'Bokrasopea', Sonic Bloom [®] Pearl	CBG	1178-2014*4	2.01 ± 0.01	2
<i>W.</i> 'Olympiade', Briant Rubidor	CBG	898-1998	2.01 ± 0.02	2
<i>W.</i> 'Java Red' sport	CBG	61-2012	2.01 ± 0.02	2
<i>W.</i> 'Dark horse'	CBG	04R5293*03	2.01 ± 0.02	2
<i>W</i> . 'Red Prince' <i>W</i> . 'Walweigeye', Eyecatcher [®] weigela	MOR CBG	1317-2004*1 Q4R5295*7	2.00 ± 0.01 1.99 ± 0.01	2 2

Table 1. Relative genome size and ploidy levels determined via flow cytometry for species and cultivars of *Weigela*.

Table 1. Continued.

Таха	Sourcez	Accession #	Relative 2C genome size [mean ± SE (pg)]	2C ploidy level (x)
W. subsessilis	ARN	317-2001-C	1.99 ± 0.01	2
W. 'Dart's pink lady'	CBG	79-1999*5	1.99 ± 0.01	2
<i>W</i> . 'Brigela' French Lace™ weigela	MOR	785-2005*1	1.99 ± 0.02	2
W. florida	ARN	82-2010-A	1.98 ± 0.03	2
W. 'Kolmagira', Rainbow Sensation™ weigela	MOR	360-2015	1.98 ± 0.01	2
<i>W.</i> 'Rumba'	CBG	64-2012*10	1.97 ± 0.03	2
W. 'Kosteriana Variegata'	CBG	382-2001*8	1.97 ± 0.03	2
W. subsessilis	ARN	587-53-A	1.97 ± 0.01	2
W. maximowiczii	ARN	167-97-B	1.97 ± 0.01	2
W. praecox	MOR	554-79*11	1.97 ± 0.03	2
W. subsessilis	CBG	249-2008-A	1.96 ± 0.01	2
W. hortensis	MOR	178-85*2	1.96 ± 0.01	2
W. 'Verweil-4', Sonic Bloom® Red	CBG	1202-2013*1	1.96 ± 0.02	2
<i>W.</i> 'Java Red'	CBG	612-2012*5	1.96 ± 0.02	2
<i>W.</i> 'Bokrasopin', Sonic Bloom™ Pink	CBG	961-2013*3	1.95 ± 0.03	2
W. 'Suzanne'	CBG	481-2003	1.95 ± 0.03	2
W. florida	ARN	132-96-B	1.94 ± 0.01	2
W. florida	ARN	422-93-A	1.94 ± 0.02	2
W. florida var. venusta	ARN	817-84-B	1.94 ± 0.05	2
W. 'Foliis Purpurius'	CBG	957-1991*1	1.94 ± 0.00	2
W. florida	MOR	319-94*1	1.94 ± 0.00	2
W. hortensis	ARN	279-84-B	1.94 ± 0.01	2
W. praecox	ARN	966-85-D	1.93 ± 0.01	2
W. 'Sunny Princess'	CBG	191-2013*1	1.93 ± 0.03	2
W. 'Styriaca'	CBG	638-2003*3	1.92 ± 0.01	2
W. looymansii 'Aurea'	CBG	1423-2002*2	1.90 ± 0.00	2
W. preacox	ARN	843-84-B	1.90 ± 0.01	2
W. florida	ARN	404-86-B	1.90 ± 0.02	2
W. 'Abel Carriere'	CBG	76-1999	1.90 ± 0.01	2
W. florida	ARN	125-2003-B	1.89 ± 0.00	2
W. hortensis	ARN	30-2001-C	1.88 ± 0.01	2
W. praecox 'Korean Sunrise'	CBG	482-2003*6	1.87 ± 0.03	2

¹Source Codes: MOR, The Morton Arboretum, Lisle Illinois; ARN: Arnold Arboretum of Harvard University, Boston, Massachusetts; CBG: Chicago Botanic Garden, Glencoe, Illinois.

At the beginning of our investigation we had thought that recurrent blooming may be linked to polyploidy in weigela, but this does not necessarily appear to be the case. Although 'Courtalor' CARNAVAL is a recurrent blooming polyploid, other repeat or re-blooming cultivars such as the SONIC BLOOM series ('Verweil-4' SONIC BLOOM Red, 'Borksopin' SONIC BLOOM Pink, and 'Bokrasopea' SONIC BLOOM Pearl), 'Red Prince', and 'White Knight' all are diploid. Mutation breeding and ploidy manipulation may be viable methods for further improvement in *Weigela*, including further improvement in flower size, heavier recurrent bloom, and improvement in plant stature. The new plant development program at The Morton Arboretum has a weigela improvement program underway.

ACKNOWLEGEMENTS

We graciously thank the Daniel P. Haerther Charitable Trust for its support of the new plant development program and the Arnold Arboretum of Harvard University and the Chicago Botanic Garden for supplying germplasm for this study.

Literature cited

Dirr, M. (2009). Manual of Woody Landscape Plants: Their Identification, Ornamental Characteristics, Culture, Propagation and Uses, 6th ed. (Champaign, Illinois: Stipes Pub).

Duron, M., and Decourtye, L. (1990). In vitro variation in *Weigela*. In Somaclonal Variation in Crop Improvement 1, Y.P.S. Bajaj, ed. (Springer), p.606–623.

Sheffield Botanical Gardens (SBG). (n.d.). (2015). The genus *Weigela* (*Caprifoliaceae*). http://www.sbg.org.uk/portfolio-items/the-genus-weigela-caprifoliaceae/ (Retrieved October 13, 2015).

Greilhuber, J., Temsch, E.M., and Loureiro, J.C.M. (2007). Nuclear DNA content measurement, p.67-101. In: Doležel, J., J. Greilhuber, and J. Suda (eds.). Flow Cytometry with Plant Cells: Analysis of Genes, Chromosomes and Genomes (Wiley-VCH, Weinheim, Germany).

Pantin, O. (2015). *Weigela* CARNAVAL[®] 'Courtalor'. http://www.sapho.fr/gb/trees-and-shrubs/134-weigela-carnaval-courtalor.html (Retrieved October 13, 2015).

Sokolovskaya, A.P., and Probatova, N.S. (1985). Chromosome numbers in the vascular plants from the Primorye Territory, Kamchatka Region, Amur Valley, and Sakhalin. Botanicheskii Zhurnal SSSR. *70*, 997–999.

Wood, T. (n.d.). Weigela — opinions of a reformed plant snob. https://www.provenwinners.com/learn/ weigela-opinions-reformed-plant-snob (Retrieved October 13, 2015).